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Marcel Scharthe , Bernd Schwaabf

aVrije Universiteit Amsterdam and Tinbergen Institute
bBooth School of Business University of Chicago

cUBS Zurich
dCREATES, Aarhus University

eUniversity of New South Wales, Australia
f European Central Bank, Frankfurt am Main

Workshop ISF 2014 Rotterdam



What next ?

• We present a short introduction & review on GAS models.

• Focus: time-varying parameter models.

• Score driven models reduce to many well-established models in
financial econometrics.

• Here we show how interesting new model formulations can be
derived.

Agenda

• Forecasting with GAS models and comparisons with State Space
Models

• Dynamic Factor Models with Mixed Measurements and Mixed
Frequencies

• Modelling Dynamic Volatilities and Correlations using GAS models
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The basic framework

Consider model for the data y which we represent as p(y ;ψ).
Parameter vector is ψ.
In time series, we evaluate likelihood function via prediction errors

p(y ;ψ) = p(y1;ψ)
n∏

t=2

p(yt |y1, . . . , yt−1;ψ).

Assume that we want to consider a sub-set of ψ as time-varying :

ψt = (ft ; θ),

where ft represents the time-varying parameter and θ the remaining fixed
coefficients.

The TV parameter ft typically represents βt and/or σt .
The TV parameter may be modelled in an autoregressive form

ft+1 = ω + Bft + A× ” some innovation ”.
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Score driven models

The t-th contribution to the loglikelihood ` = log p(y ;ψ) :

`t = log p(yt |y1, . . . , yt−1, f1, . . . , ft ; θ),

where we assume that f1, . . . , ft are known (they are realized).

The parameter value for next period, ft+1, is determined by an
autoregressive updating function that has an innovation equal to the
score of `t with respect to ft .

By determining ft+1 in this way, we obtain a recursive algorithm for the
estimation of time-varying parameters.

We have labelled this approach as the

generalized autoregressive score model,

or the GAS model. More details are given next.
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Generalized autoregressive score model
For the observation equation,

yt ∼ p(yt |Yt−1, ft ; θ), Yt = {y1, . . . , yt},

we propose a GAS updating scheme for ft based on

ft+1 = ω + Bft + Ast ,

where the innovation or driving mechanism st is given by

st = St · ∇t

where

∇t =
∂ ln p(yt |Yt−1, ft ; θ)

∂ft
,

St = I−1
t−1 = −Et−1

[
∂2 ln p(yt |Yt−1, ft ; θ)

∂ft∂f ′t

]−1

.
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Volatility modelling

We have
yt = µ+ εt , εt ∼ NID(0, ft).

The GAS model for ft can be constructed by considering

yt ∼ p(yt |Yt−1, ft ; θ),

ft+1 = ω + Bft + Ast ,

with driving mechanism
st = St · ∇t

where

∇t =
∂ ln p(yt |Yt−1, ft ; θ)

∂ft
,

St = I−1
t−1 = −Et−1

[
∂2 ln p(yt |Yt−1, ft ; θ)

∂ft∂f ′t

]−1

.
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GAS variance updating reduces to GARCH
Assume µ = 0, we have

yt = εt , εt ∼ NID(0, ft),

with variance ft = σ2
t . Score and inverse information matrix are:

ln p(yt |Yt−1, ft ; θ) = −1

2
ln 2π − 1

2
ln ft −

y2
t

2ft
,

∇t =
1

2f 2
t

y2
t −

1

2ft
=

1

2f 2
t

(y2
t − ft),

Et−1(∇t) = 0, −It−1 = − 1

2f 2
t

,

St = I−1
t−1 = 2f 2

t ,

and we have st = St · ∇t = y2
t − ft for the GAS updating

ft+1 = ω + Bft + A(y2
t − ft).

Hence, this GAS update scheme reduces to GARCH for ft = σ2
t :

σ2
t+1 = ω + Bσ2

t + A(y2
t − σ2

t ) = ω + βσ2
t + αy2

t , (β = B − A).
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Volatility modeling

A class of volatility models is given by

yt = µ+ σ(ft)ut , ut ∼ pu(ut ; θ), t = 1, 2, . . . ,T ,

ft+1 = ω + βft + αst ,

where:

• σ() is some continuous function;

• pu(ut ; θ) is a standardized disturbance density;

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .

Some special cases

• σ(ft) = ft and pu is Gaussian : GAS ⇒ GARCH;

• σ(ft) = exp(ft) and pu is Gaussian : GAS ⇒ EGARCH;

• σ(ft) = exp(ft) and pu is Student’s t : GAS ⇒ t-GAS.
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Another example: modelling durations

Consider an exponential (E is exponential density) model,

yt = λtεt , εt ∼ E(1).

Let ft = λt . The score and inverse of the information matrix are:

∇t =
yt
f 2
t

− 1

ft
,

St = I−1
t−1 = f 2

t .

Here the GAS update scheme reduces to
the E-ACD model of Engle and Russell (1998):

ft+1 = ω + A(yt − ft) + Bft
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More of such special cases

GAS updating for appropriate observation densities and particular scaling
choices reduces to well-known GARCH-type time series models.

• GARCH for N(0, ft) : Engle (1982), Bollerslev (1986)

• EGARCH for N(0, exp ft) : Nelson (1991)

• Exponential distribution (ACD and ACI): Engle & Russell (1998)
and Russell (2001), respectively

• Gamma distribution (MEM): Engle (2002), Engle & Gallo (2006)

• Poisson: Davis, Dunsmuir & Street (2003)

• Multinomial distribution (ACM): Russell & Engle (2005)

• Binomial distribution: Cox (1956), Rydberg & Shephard (2002)

We discuss this general GAS framework in
Creal, Koopman and Lucas (2013, JAE).
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Discussion

• In econometrics, score and Hessian are familiar entities in estimation;

• Using contribution of score at time t only (wrt predictive density)
and using it as an innovation in a time-varying parameter scheme is
not unreasonable.

• It turns out that many GARCH-type time series models are
effectively constructed in this way.

• In case of GARCH (Gaussian), innovation or driver mechanism has
an interpretation : E(y2

t ) = σ2.

• In other cases (incl. GARCH with t-densities), choice of driver
mechanism is not so clear.

• We then can rely on GAS and still get an appropriate updating
scheme.
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Statistical properties
The GAS(p, q) model is

yt ∼ p(yt |Yt−1, ft , ft−1, . . . , ft−q; θ),

ft+1 = ω +

p−1∑
i=0

Ai st−i +

q−1∑
j=0

Bj ft−j

st = St · ∇t

• The expectation of the score is zero: Et−1[∇t ] = 0.

• As a result, st is a martingale difference sequence.

• If ft is stationary, its unconditional expectation is
E[ft ] = ω (I − B(1))−1.

• Conditions for stationarity and ergodicity of GAS process :
Blasques, Koopman and Lucas (BKL, 2013).

• Asymptotic properties of MLE (Consistency, AN) : BKL 2014a.

• Optimality of score updating in Kullback-Leibler sense : BKL 2014b.
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Different specifications

yt ∼ p(yt |Yt−1, ft , ft−1, . . . , ft−q; θ),

ft+1 = ω +

p−1∑
i=0

Ai st−i +

q−1∑
j=0

Bj ft−j

st = St · ∇t

• The default choice for scaling is St = I−1
t−1 or St = I−1/2

t−1 .

• Alternative: St = I ; ”steepest descent” appears to be less stable...

• In case default choice is close to singular, we can do some mild
smoothing of past It ’s using an EWMA scheme:

Ict−1 = α̃Ict−2 + (1− α̃)It−1,

and St = (Ict−1)−1. This appears to work very effectively.

• Extensions with long-memory: Janus, Koopman and Lucas (2012).
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Recent developments: http://gasmodel.com
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Recent developments: http://gasmodel.com

• Harvey (2013) Dynamic Models for Volatility and Heavy Tails: With
Applications to Financial and Economic Time Series

• De Lira Salvatierra and Patton (2013) Dynamic Copula Models and
High Frequency Data

• Ito (2013) Modeling Dynamic Diurnal Patterns in High Frequency
Financial Data

• Janus, Koopman and Lucas (2013) Long memory GAS

• Oh and Patton (2013) Time-Varying Systemic Risk: Evidence from
a Dynamic Copula Model of CDS Spreads

• Lucas, Schwaab and Zhang (2013) Measuring credit risk in a large
banking system: econometric modeling and empirics

• Boudt, Danielsson, Koopman and Lucas (2013) Regime Switches in
the Volatility and Correlation of Financial Institutions
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Prediction based on parameter-driven versus observation-driven models

S.J. Koopman, A. Lucas and M. Scharth

Focus is out-of-sample prediction of parameters

We consider dynamic models for count, intensity, duration, volatility and
copula densities using three specifications that are popular in economic
and financial time series:

1. nonlinear non-Gaussian state space model as formulated for example
by Durbin and Koopman (2000); this is the class of
parameter-driven models.

2. observation-driven models based on the score function of the
predictive likelihood function as formulated by
Creal, Koopman and Lucas (2011, 2013) and Harvey (2013).

3. observation-driven models based on the moment function of the
time series; typical examples are GARCH model of Engle (1982) and
Bollerslev (1987), autoregressive conditional duration model of Engle
and Russell (1998), and multiplicative error models of Engle and
Gallo (2006).
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Parameter-driven versus observation-driven models

Introduction & Motivation

Are these models equally general ?

Parameter-driven models are flexible and can be easily adjusted in new
settings.

Observation-driven models have so far lacked a similarly flexible unifying
framework: for a new observation density and parametrisation.

• To update the time-varying parameter as a function of past and
current data: what is the apppropriate funtion ?

• In terms of volatility, y2
t can be argued as a ”natural” driver.

• In many other settings it may not be evident...

• The score function provides a unified solution and can be easily
applied.
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Parameter-driven versus observation-driven models

Introduction & Motivation

Can we compare these classes of models ?

The predictive distribution of a parameter-driven model is a mixture of
measurement densities for the stochastically time-varying parameter.

The predictive density of observation-driven models is simply the
observation density given a perfectly predictable parameter.

• Parameter-driven models typically generate overdispersion related to
mixtures: heavier tails and other features.

• We need to control for this difference.

• We need to accommodate similar degrees of overdispersion and fat
tails as parameter-driven models.

• It requires models based on exponential-gamma, Weibull-gamma
and double-gamma mixtures: intrinsically interesting duration and
multiplicative error models.
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Parameter-driven versus observation-driven models

Introduction & Motivation

Is it computationally feasible to do the comparisons ?

Parameter estimation for nonlinear non-Gaussian state space models is
computationally intensive.

Large-scale comparative analyses such as Hansen and Lunde (2005)
exclude parameter-driven models.

We now have numerically accelerated importance sampling method
(NAIS) of Koopman, Lucas and Scharth (2013).

• NAIS is fast and numerically efficient parameter estimation for
nonlinear non-Gaussian state space models: Koopman and Lit (2013)

• It requires no model-specific interventions other than the
specification of the appropriate observation densities.

• NAIS can effectively be used in a Monte Carlo analysis.

• NAIS can also efficiently compute out-of-sample forecasts of
time-varying parameters: the prime focus of our study.
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Main findings

Introduction & Motivation

Findings I : based on nine model specifications and for the loss in mean
square error. We also consider the model confidence sets (MCS) of
Hansen, Lunde and Nason (2011).

• When the DGP is a state space model, the predictive accuracy of
the misspecified GAS model is similar to that of the correctly
specified state space model.

• Especially for GAS observation density that allows for heavy tails
and overdispersion : the loss is smaller than 1% most of the time
and never higher than 2.5%

• For the state space DGPs, the GAS model lies in the 90% model
confidence set for at least 60% of the samples with as many as
2, 000 observations.

• An observation-driven alternative to a parameter-driven model is
available that is accurate in forecasting and easy to estimate.
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Main findings

Introduction & Motivation

Findings II : based on nine model specifications and for the loss in mean
square error. We also consider the model confidence sets (MCS) of
Hansen, Lunde and Nason (2011).

• Score models outperform many of the familiar observation-driven
models (ACM: GARCH, ACD, MEM)

• Score models capture additional information in the data that is not
exploited by ACM models.

• Score models are therefore effective new tools for forecasting !
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Dynamic model specifications

Modelling time-varying parameters

State space model:

We assume that yt is generated by

yt |θt ∼ p(yt |θt ;ψ), θt = Λ(αt), t = 1, . . . , n,

where θt is the time-varying parameter vector, Λ(·) is the link function,
and scalar αt has a linear dynamic specification.

The static parameter vector ψ incorporates additional fixed and unknown
coefficients.

The state space model has updating equation

αt+1 = δ + φαt + ηt , α1 ∼ N(a1,P1), ηt ∼ N(0, σ2
η),

where δ is a constant and φ is the autoregressive coefficient.
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Dynamic model specifications

Modelling time-varying parameters

State space model:

Interesting examples of the state space model specifications include:

• the stochastic volatility model
Tauchen and Pitts (1983), Taylor (1986), Melino and Turnbull
(1990) and Ghysels, Harvey and Renault (1996),

• the stochastic conditional duration model
Bauwens and Veredas (2004),

• the stochastic conditional intensity model
Bauwens and Hautsch (2006),

• the stochastic copula model
Hafner and Manner (2012),

• the non-Gaussian unobserved components time series model
Durbin and Koopman (2000).
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Dynamic model specifications

Modelling time-varying parameters

The GAS model
The observation-driven score model has updating equation

αt+1 = d + a st + b αt ,

where d , a and b are fixed coefficients and st = st(αt ,Ft ;ψ) is the
driving mechanism with Ft being information set up to time t. The score
is

st = St(αt) · ∇t(αt), ∇t(αt) =
∂ ln p(yt |αt , Ft ; ψ)

∂αt
,

where we take the scaling matrix as St(αt) = It(αt)
−1/2

The parameter αt+1 is updated in the direction of steepest increase of
the log-density at time t.

This update is a martingale difference under correct model specification.
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Dynamic model specifications

Modelling time-varying parameters

Autoregressive conditional moment model
It is the same updating equation

αt+1 = d + a st + b αt ,

where d , a and b are fixed coefficients.

Here st is taken such that

E [st |Ft−1] = θt = αt .

We refer to this class as autoregressive conditional moment (ACM)
models.

Intuitive notion : αt should increase (or decrease) if the realised value for
st is higher (or lower) than its conditional expectation.

It includes GARCH, ACD, MEM, etc.
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Dynamic model specifications

Observation densities

Distribution Density Link function

Poisson
λ
yt
t

yt !
e−λt λt = exp(αt)

Neg. Binomial Γ(k1+yt )
Γ(k1)Γ(yt+1)

(
k1

k1+λt

)k1
(

λt
k1+λt

)yt
λt = exp(αt)

Exponential λte−λtyt λt = exp(αt)

Gamma 1

Γ(k1)β
k1
t

yk1−1
t e−yt/βt βt = exp(αt)

Weibull k1
βt

(
yt
βt

)k1−1
e−(yt/βt )k1 βt = exp(αt)

Gaussian vol 1√
2πσt

e−y2
t /2σ2

t σ2
t = exp(αt)

Student’s t vol
Γ( ν+1

2 )√
(ν−2)πΓ( ν2 )σt

(
1 +

y2
t

(ν−2)σ2
t

)− ν+1
2

σ2
t = exp(αt)

Gaussian copula

1

2π
√

1−ρ2
t

exp

[
−

z2
1t+z2

2t−2ρt z1t z2t

2(1−ρ2
t )

]
∏2

i=1
1√
2π

e
−z2

it
/2

ρt = 1−exp(−αt )
1+exp(−αt )

Student’s t copula
Γ( ν+2

2
)Γ( ν

2
)

Γ( ν+1
2

)

1√
1−ρ2

t

[
1+

z2
1t+z2

2t−2ρt z1t z2t

ν(1−ρ2
t )

]− ν+2
2

∏2
i=1(1+zit/ν)

− ν+1
2

ρt = 1−exp(−αt )
1+exp(−αt )
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Dynamic model specifications

Observation-driven model updates

Distribution GAS ACM
∇t(θt) It(θt) st

Poisson yt
λt
− 1 1

λt
yt

Neg. Binomial yt
λt
− k1+yt

k1+λt

k1
λt (k1+λt )

yt

Exponential 1
λt
− yt

1
λ2
t

yt

Gamma y

θ2
t
− k1
βt

k
β2
t

yt/k1

Weibull k1
βt

[(
yt
βt

)k1
− 1

] (
k1
βt

)2 yt
Γ(1+k−1

1 )

Gaussian vol 1
2σ2

t

(
y2
t

σ2
t
− 1

)
1

2σ4
t

y2
t

Student’s t vol 1
2σ2

t

(
ωty

2
t

σ2
t
− 1

)
ν

2(ν+3)σ4
t

y2
t

ωt = ν+1
(ν−2)+y2

t /σ
2
t

Gaussian cop
(1+ρ2)(ẑ1,t−ρt )−ρt (ẑ2,t−2)

(1−ρ2)2

1+ρ2
t

(1−ρ2
t )2 z1,tz2,t

Student’s t cop
(1+ρ2)(ωt ẑ1,t−ρt )−ρt (ωt ẑ2,t−2)

(1−ρ2)2

(ν+2+νρ2
t )

(ν+4)(1−ρ2
t )2 z1,tz2,t

ωt = ν+2

ν+
ẑ2,t−2ρt ẑ1,t

1−ρ2
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Weibull-gamma model

Observation-driven continuous mixture models

Consider the Weibull distribution

p(yt |γt ; k1) = γt k1 y
k1−1
t exp(−γt yk1

t ),

where k1 is a shape coefficient and γt is a time-varying scaling variable.

E(yt |γt , k) = γ
−1/k1

t Γ(1/k1 + 1).

Let γt = µt νt where αt = log(µt) ∼ GAS, νt ∼ iid Γ(k−1
2 , k2), with

p(νt ; k2) =
ν
k−1

2 −1
t e−νt/k2

Γ(k−1
2 )k

k−1
2

2

, E (νt) = 1, Var(νt) = k2 <∞.

The Weibull-gamma mixture or Burr density p(yt |µt ; k) is∫ ∞
0

p(yt |µt , νt ; k1)p(νt)d νt = µtk1y
k1−1
t

(
1 + k2µty

k1
t

)−(1+k−1
2 )

Also see Lancaster (1979), Grammig and Maurer (2000) and Andres and
Harvey (2012).
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Weibull-gamma model

Observation-driven continuous mixture models

We notice that E (yt |µt ; k1, k2) is

µ
−k−1

1
t Γ(k−1

1 + 1)E
(
ν
−k−1

1
t

)
= (µtk2)−k

−1
1

Γ(k−1
2 − k−1

1 )

Γ(k−1
2 )

.

We need to impose 0 < k2 < k1 so that Γ(k−1
2 − k−1

1 ) exists.

∇t =
1

µt
− (1 + k2)

yk1
t

1 + k2µty
k1
t

, I−1
t = µ2

t (1 + 2k2),

This update recovers the Weibull model when k2 → 0.

The scaled score is

st = I−1/2
t ∇t =

√
1 + 2k2

(
1− (1 + k2)

µty
k1
t

1 + k2 µt y
k1
t

)
.

By setting k1 = 1 above, the specification specialises to the
exponential-gamma GAS model.
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Weibull-gamma model

Observation-driven continuous mixture models

The effect of the mixture model
Next figures illustrate the probability density function and the GAS
updates for the Weibull (k2 = 0) and the Weibull-gamma mixture model
(k2 = 0.5) for k1 = 1.2 and µt = 0.5.

Panel (a) shows that the mixture density function significantly stretches
the right tail of the distribution.
Panel (b) shows that realisations of yt in the right tail of the distribution
have limited additional impact on st in mixture model.

This property contrasts sharply to the corresponding ACM model where
the update for the conditional mean is linear in yt irrespective of the
value of the mixture variance k2.

We can do similar mixtures, eg for the Gamma :
the Gamma-Gamma mixture.
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Weibull-gamma model

Observation-driven continuous mixture models
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Weibull-gamma model

Observation-driven continuous mixture models
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Monte Carlo Study

Design : the GDPs

Model Distribution State Space, GAS
Type δ, d φ, b ση, a other
Count Poisson 0.00 0.98 0.15
Count Neg. Binomial 0.00 0.98 0.15 k1 = 4
Intensity Exponential 0.00 0.98 0.15
Duration Gamma 0.00 0.98 0.15 k1 = 1.5
Duration Weibull 0.00 0.98 0.15 k1 = 1.2
Volatility Gaussian 0.00 0.98 0.15
Volatility Student’s t 0.00 0.98 0.15 ν = 10
Copula Gaussian 0.02 0.98 0.10
Copula Student’s t 0.02 0.98 0.10 ν = 10
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Monte Carlo Study

Design of study

We consider these nine observation densities.
The autoregressive state equation completes the specifications of all
parameter-driven models.

We draw 1, 000 time series realisations, n = 4, 000 for each DGP.
In each simulation, we use the first 2, 000 observations to estimate the
parameters for the following model specifications.

1. the correctly specified state space model;

2. the GAS model based on the same conditional observation density as
the DGP

3. the ACM model for the corresponding specification;

4. in the case of the exponential, gamma, Weibull, and Gaussian
models, a robust variant of the GAS and ACM specification.
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Monte Carlo Study

Design of study

We compute one-step ahead predictions for the next 2,000 values of θt
given the parameter values estimated from the first 2,000 observations
yt .

We therefore consider two million (2, 000× 1, 000) forecasts for each
specification.

We measure the accuracy by means of the mean squared error (MSE), in
levels and relative to the MSE of the state space model.

We compute the MSE across the two million forecasts of θt .
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Monte Carlo Study

Results : state space is DGP

Relative mean-square error

Distribution State Space GAS ACM
True Estimated (1) (2) (1) (2)

Poisson 0.987 1.000 — 1.005 — 1.059
Neg. Binomial 0.982 1.000 — 1.008 — 1.030
Exponential 0.979 1.000 1.022 1.200 1.117 1.260
Gamma 0.985 1.000 1.004 1.050 1.033 1.032
Weibull 0.981 1.000 1.005 1.057 1.040 1.023
Gaussian 0.973 1.000 1.009 1.203 1.041 1.038
Student’s t 0.968 1.000 — 1.004 — 1.145
Gaussian cop 0.957 1.000 — 1.014 — 1.312
Student’s t cop 0.946 1.000 — 1.006 — 1.430
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Monte Carlo Study

Results : GAS is DGP

Distribution Relative mean-square error Mean-square error
State Space GAS ACM State Space GAS ACM

Poisson 2.888 1.000 9.187 0.012 0.004 0.038
Neg. Binomial 1.192 1.000 3.838 0.008 0.006 0.024
Exponential 5.849 1.000 4.959 0.048 0.008 0.041
Gamma 6.026 1.000 3.181 0.123 0.020 0.065
Weibull 7.614 1.000 5.217 0.050 0.007 0.034
Gaussian 8.039 1.000 6.253 0.180 0.022 0.140
Student’s t 1.994 1.000 3.426 0.057 0.029 0.098
Gaussian cop 1.540 1.000 3.812 0.002 0.002 0.006
Student’s t cop 1.175 1.000 5.490 0.002 0.002 0.010
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Empirical results

Volatility models

Data

We have daily and high-frequency prices for twenty stocks from the Dow
Jones index (January 1993 – June 2012) and five major stock indices
between (January 1996 – October 2012).

Parameter estimation for all eight models is based on daily close-to-close
returns.

We compute one-step ahead forecasts starting in 2001 and 2004 for the
stocks and indices.

For each model the parameters are re-estimated every three months, in
an expanding window including all previous daily returns.

The precision of the forecasts from a model is evaluated by comparing
the volatility forecasts with the daily realised volatilities as measured from
high-frequency data.
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Empirical results

Volatility models

Models

1. SV

2. GAS

3. GARCH

4. EGARCH

5. SV with leverage

6. GAS with leverage

7. GJR : GARCH with leverage

8. EGARCH with leverage
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Empirical results

Volatility models

Relative variance of the residuals of
Mincer-Zarnowitz regressions of the realised volatilities

Stock/index No leverage Leverage
SV GAS GARCH SV GAS GJR EGARCH

Am Exp 1.08 1.08 1.09 1.00 0.99 1.02 0.99
Boeing 1.07 1.06 1.13 1.00 0.99 1.04 1.00
Chevron 1.12 1.13 1.21 1.00 1.00 1.20 1.00
Disney 1.13 1.19 1.18 1.00 1.05 1.09 1.10
GE 1.06 1.04 1.06 1.00 0.99 1.01 1.01
IBM 1.12 1.11 1.23 1.00 0.98 1.11 1.00
JPMorgan 1.07 1.09 1.07 1.00 1.02 1.09 1.02
Coca-Cola 1.07 1.06 1.13 1.00 0.99 1.09 1.02
P & G 1.06 1.07 1.06 1.00 0.99 1.04 0.99
AT&T 1.06 1.06 1.11 1.00 1.03 1.08 1.04
DAX 30 1.27 1.26 1.27 1.00 1.01 1.14 0.99
FTSE 100 1.20 1.16 1.22 1.00 1.06 1.16 1.08
NASDAQ 1.20 1.20 1.21 1.00 0.99 1.01 1.00
S&P 500 1.28 1.30 1.35 1.00 1.04 1.22 1.05
Best model 0.00 0.00 0.00 0.48 0.36 0.00 0.16
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Parameter-driven versus observation-driven models

Conclusions

GAS prediction for time-varying parameters is effective and convincing
compared to parameter driven alternatives
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Methodology for Credit and Systemic Risk Detection

D. Creal, B. Schwaab, S.J. Koopman & A. Lucas

• Economic time series often share common features, e.g. business
cycle dynamics.

• Economic time series may be continuous and/or discrete and be
observed at different frequencies.

• We introduce
observation-driven mixed measurement panel data models

• The approach allows for non-linear, non-Gaussian models with
common factor across different distributions.

• Application: we develop a models for credit ratings transitions and
loss-given-default (LGDs) with macro factors.

• The models include:

1. Time-varying Gaussian model
2. Time-varying ordered logit
3. Time-varying beta distribution
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Non-Gaussian Dynamic Factors: Credit Risk Application

• Economic time series often share common features, e.g. business
cycle dynamics.

• Economic time series may be continuous and/or discrete and be
observed at different frequencies.

• We introduce
observation-driven mixed measurement panel data models

• The approach allows for non-linear, non-Gaussian models with
common factor across different distributions.

• Application: we develop a models for credit ratings transitions and
loss-given-default (LGDs) with macro factors.

• The models include:

1. Time-varying Gaussian model
2. Time-varying ordered logit
3. Time-varying beta distribution
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Mixed measurement panel data models

We introduce mixed measurement observation driven models

yit ∼ pi (yit |ft ,Yt−1;ψ), i = 1, . . . ,N,

ft+1 = ω + Bft + Ast

The score function is

st = St∇t

∇t =
N∑
i=1

δit∇i,t =
N∑
i=1

δit
∂ log pi (yit |ft ,Yt−1;ψ)

∂ft
,

• The observations yit may come from different distributions.

• The factors ft may be common across distributions.

• KEY: The score function allows us to pool information from different
observations to estimate the common factor ft .

• δit is an indicator function equal to 1 if yit is observed and zero otherwise.
Missing values are naturally taken into account.
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Scaling matrix

Consider the eigenvalue-eigenvector decomposition of Fisher’s (conditional)
information matrix

It = Et−1[∇t∇′t ] = UtΣtU
′
t ,

The scaling matrix is then defined as

St = UtΣ
−1/2
t U′t

• St is then the “square root” of a generalized inverse.

• The innovations st driving ft have an identity covariance matrix, when the info.
matrix is non-singular.

• The conditional information matrix is additive for our models:

It = Et−1[∇t∇′t ] =
N∑
i=1

δit Ei,t−1[∇it∇′it ].
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Log-likehood function and ML estimation

• The log-likelihood function for an observation-driven model can
easily be computed.

• The ML estimator is

ψ̂ = arg max
ψ

T∑
t=1

N∑
i=1

δit log pi (yit |ft ,Yt−1;ψ),

• Estimation is similar to a GARCH model.
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Credit risk

• Growing econometrics literature on models for credit risk: McNeil et
al. (2005), Bauwens and Hautsch (JFEct, 2006), Gagliardini and
Gourieroux (JFEct, 2005), Koopman Lucas and Monteiro (JEct,
2008), Duffie et al. (JFE, JoF 2008).

• Basic observations:
1. Probability of default varies over time with the business cycle.
2. Conditional on default, the loss (recovery rate) varies with the business

cycle.
3. We observe excess clustering of defaults and ratings transitions beyond

what can be explained by simply adding covariates.

4. The literature focuses on a credit risk or frailty factor.

• Industry standard models are too simple to capture these features.

• New models in the literature are parameter driven models requiring
simulation methods for estimation.

• We provide observation driven alternatives.
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Data: Moody’s and FRED

• We observe data from Jan. 1980 to March 2010.

• 7, 505 companies are rated by Moody’s.

• We pool these into 5 ratings categories (IG, BB, B, C, D).

• We observe transitions, e.g. IG → BB or C → D

• There are J = 16 total types of transitions.

• 19,450 total credit rating transitions.

• 1,342 transitions are defaults.

• 1,125 measurements of loss-given default (LGD).

• LGD is the fraction of principal an investor loses when a firm
defaults.

• We also observe six macroeconomic variables: industrial production
growth, credit spread, unemployment, annual S&P500 returns,
realized volatility, real GDP growth (qtly).
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Models

• Credit ratings can be modeled using the (static) ordered probit
model of CreditMetrics; one of the current industry standards, see
Gupton Stein (2005).

• LGD’s are often modeled by (static) beta distributions.

• GOAL: Build models that improve on current industry standards and
are (relatively) easy to implement and estimate.

1. Time-varying Gaussian model
2. Time-varying ordered logit

3. Time-varying beta distribution

• Forecasting credit risk.

• Simulation of loss distributions and scenario analysis.

• Bank executives and regulators and can use them for “stress
testing.”
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Mixed measurement model for credit risk

ym
t ∼ N (µt ,Σm)

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

• ym
t are the macro variables.

• y c
i,t are indicator variables for each credit rating j for firm i .

• y r
k,t are the LGDs for the k-th default.

• Kt are the number of defaults in period t.

• µt , πijt , and (akt , bkt) are functions of an M × 1 vector of factors ft .
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Time varying Gaussian model for macro data

ym
t ∼ N (µt ,Σm) ,

µt = Zmft .

• Zm is a (6×M) matrix of factor loadings.

• Σm is a (6× 6) diagonal covariance matrix.

• S̃t is a selection matrix indicating which macro variables are
observed at time t.

∇m
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃t (ym
t − µt) ,

Imt =
(
S̃tZ

m
)′ (

S̃tΣmS̃
′
t

)−1

S̃tZ
m.
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Moody’s monthly credit ratings transitions
The data have been pooled together each month.
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Time-varying ordered logit

y c
i,t ∼ Ordered Logit (πijt , j ∈ {IG, BB, B, C, D}) ,
πijt = P [Ri,t+1 = j ] = π̃ijt − π̃i,j−1,t ,

π̃ijt = P [Ri,t+1 ≤ j ] =
exp(θijt)

1 + exp(θijt)
,

θijt = zcijt − Z c′
it ft .

• Jc = 5 categories j ∈ {IG, BB, B, C, D}.
• Rit is the rating for firm i at the start of month t.

• y c
it is an indicator variable for each rating type.

• πijt is the probability that firm i is in category j .

• π̃i,D,t = 0 and π̃i,IG,t = 1.

• A time-varying ordered logit model is a new concept.
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Time-varying ordered logit

The contribution to the log-likelihood at time t is

ln pi (y
c
it |ft ,Yt−1;ψ) =

Nt∑
i=1

Jc∑
j=1

y c
ijt log (πijt)

The score and information matrices are

∇c
t = −

Nt∑
i=1

Jc∑
j=1

y c
ijt

πijt
· π̇ijt · Z c

it ,

Ict =
Nt∑
i=1

nit

∑
j

π̇2
ij,t

πij,t

 Z c
itZ

c′
it

where

π̇ijt = π̃ijt (1− π̃ijt)− π̃i,j−1,t (1− π̃i,j−1,t) .
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Loss given default

• When a firm defaults, investors typically lose a fraction of their
investment (alternatively, they recover a fraction of their
investment).

• The fraction of losses experienced by investors also varies with the
business cycle.

• A model for a time-varying beta distribution is developed.

• See McNeil and Wendin (2007 JEmpFin) for Bayesian inference in a
state space model.
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Loss given default by transition type
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Time-varying beta distribution

y r
k,t ∼ Beta (akt , bkt) , k = 1, . . . ,Kt ,

akt = βr · µr
kt

bkt = βr · (1− µr
kt)

log (µr
kt/ (1− µr

kt)) = z r + Z r ft .

• We observe Kt ≥ 0 defaults at time t.

• 0 < y r
k,t < 1 is the amount lost conditional on the k-th default.

• µr
kt is the mean of the beta distribution.

• z r is the unconditional level of LGDs.

• Z r is a (1×M) vector of factor loadings.

• βr is a scalar parameter
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Time-varying beta distribution

The contribution to the log-likelihood at time t is

ln pi (y
r
kt |ft ,Yt−1;ψ) =

Kt∑
k=1

(akt − 1) log
(
y r
kt

)
+ (bkt − 1) log

(
1− y r

kt

)
− log [B (akt , bkt)]

The score and information matrices are

∇r
t = βr

Kt∑
k=1

µ
r
kt(1− µr

kt)
(
Z r)′ (1,−1)

((
log(y r

kt), log(1− y r
kt)
)′ − Ḃ (akt , bkt)

)

Irt = βr

Kt∑
k=1

(
µ
r
kt(1− µr

kt)
)2 (Z r)′ (1,−1)

(
B̈ (akt , bkt)

)
(1,−1)′ Z r

where

σ2
kt = µr

kt · (1− µr
kt)/(1 + βr ).
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Estimation details

• The macro data ym
t has been standardized.

• We consider models with p = 1 and q = 1 factor dynamics.

• For identification of the level parameters, we set ω = 0 in the factor
recursion:

ft+1 = A1st + B1ft

• For identification of the factors, we also impose restrictions on
Zm,Z c , and Z r .

• Some parameters have been pooled for “rare” transitions; e.g.,
IG → D and BB → D.

• Moody’s re-defined several categories in April 1982 and Oct. 1999
causing incidental re-ratings (outliers), which we handle via dummy
variables for these dates.
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AIC, BIC, and log-likelihoods for different models

(2,0,0) (2,1,0) (2,2,0) (3,0,0)
log-Like -40447.9 -40199.1 -40162.8 -40056.2

AIC 81005.9 80520.1 80457.0 80242.4
BIC 81640.0 81223.0 81218.0 80991.0

(3,1,0) (3,2,0) (3,1,1) (3,2,1)
log-Like -39817.1 -39780.8 -39812.6 -39780.0

AIC 79776.2 79713.6 79771.2 79716.0
BIC 80594.0 80589.0 80612.0 80615.0

The number of factors for each data type are represented by (m, c , r).
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Parameter estimates for the (3,2,0) model

Macro loadings Zm

macro1 macro2 macro3 frailty1 frailty2

IP 1.000 0.000 0.000 0.000 0.000

UR -0.892∗∗∗ 0.122∗∗∗ -0.062∗ 0.000 0.000
(0.037) (0.041) (0.040)

RGDP 0.811∗∗∗ 0.072 0.336∗∗∗ 0.000 0.000
(0.066) (0.079) (0.074)

Cr.Spr. -0.169∗∗ 1.000 0.000 0.000 0.000
(0.085)

rS&P 0.049 -0.268∗∗∗ 1.223∗∗∗ 0.000 0.000
(0.093) (0.081) (0.093)

σS&P -0.007 0.648∗∗∗ 1.000 0.000 0.000
(0.107) (0.084)
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Parameter estimates for the (3,2,0) model

Credit rating and LGD loadings Z c and Z r

macro1 macro2 macro3 frailty1 frailty2

Z c

IG -0.052 0.202∗∗∗ -0.123∗∗ 1.475∗∗∗ -1.165∗∗

(0.059) (0.055) (0.069) (0.371) (0.555)
BB -0.078∗∗ 0.172∗∗∗ -0.102∗∗∗ 1.000 0.000

(0.037) (0.037) (0.040)
B -0.184∗∗∗ 0.162∗∗∗ -0.142∗∗∗ 0.970∗∗∗ -0.016

(0.035) (0.031) (0.040) (0.156) (0.158)
CCC -0.262∗∗∗ 0.073∗ -0.018 1.936∗∗∗ 1.000

(0.057) (0.050) (0.075) (0.465)

Z r 0.018 0.276∗∗∗ -0.082∗ 1.212∗∗∗ 1.065∗∗∗

(0.049) (0.046) (0.062) (0.376) (0.301)
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Estimated factors for the (3,2,0) model
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Time-varying transition probabilities
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Time-Varying Volatility and Correlation

P. Janus, S.J. Koopman, A. Lucas

Volatility GAS models

� A class of volatility models is given by

yt = µ+ σ(ft)ut , ut ∼ pu(ut ; θ), t = 1, 2, . . . ,T , (1)

ft+1 = ω + βft + αst , (2)

where:

• σ() is some continuous function;

• pu(ut ; θ) is a standardized disturbance density;

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .

� Some special cases

• σ(ft) = ft and pu is Gaussian : GAS ⇒ GARCH;

• σ(ft) = exp(ft) and pu is Gaussian : GAS ⇒ EGARCH;

• σ(ft) = exp(ft) and pu is Student’s t : GAS ⇒ Beta-t-EGARCH.
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General FIGAS specification

FIGAS model specification

Introducing FIGAS

The Fractionally Integrated Generalized Autoregressive Score (FIGAS)
model is given by

yt ∼ p(yt |Yt−1, ft ; θ), t = 1, 2, . . . ,T , (3)

f ∗t = (1− L)d ft , f ∗t+1 = ω + βf ∗t + αst , (4)

where:

• yt denotes dependent variable; Yt = [y1, . . . , yt ]
′;

• ft is the time-varying parameter of interest;

• θ collects static parameters;

• d is the fractional integration order;

• (1− L)d = 1− dL + d(d−1)
2! L2 − d(d−1)(d−2)

3! L3 + . . .

• st is the scaled score based on ∂ log p(yt |Yt−1, ft ; θ) / ∂ft .
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Long memory properties

FIGAS model specification

Some background on long memory / fractional integration

The FIGAS specification with a long memory process for {ft} is
analogous to the ARFIMA model as in Granger & Joyeaux (1980) &
Hosking (1981) for the conditional mean.

• FIGAS nests GAS for d ≡ 0 and Integrated GAS, or IGAS, for
d ≡ 1;

• the {ft} process is stationary and invertible when 1− βz 6= 0, for
|z | < 1 and when −1 < d < 1/2; see Palma (2007, Section 3.2);

• for 1/2 ≤ d < 1, the {ft} process is not stationary but
mean-reverting;
for d = 1, the {ft} process is not stationary and is not
mean-reverting; see Baillie (1996, p.22).
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General FIGAS specification

� We introduce time-varying parameters with long memory properties in
a bivariate heavy-tailed distribution for a set of stock equity returns.

• heavy-tails in returns with different tail properties;

• outliers for marginal and/or joint densities should not dillute
volatility and/or correlation processes; especially relevant for long
memory features;

• tail dependence is modeled explicitly.

Our approach :

� We model marginal series by means of conditonal Student’s t densities
and we model dependence by means of a t copula.

� The score function in the Student’s t class of distributions depends on
conditional weights that downweight extreme observations.

� The degrees of freedom parameter for the Student’s t distribution
handles the level of robustness for statistical inference.
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FIGAS for conditional variance
� Let yt denote (demeaned) log-return of some asset, assume

yt = σtεt , εt ∼ Student’s tν(0, 1),

with loglikelihood function given by

`t = c(ν)− 1

2
log(π)− 1

2
log(σ2

t )− ν + 1

2
log

(
1 +

y2
t

(ν − 2)σ2
t

)
,

where c(ν) = log
{

Γ
(
ν+1

2

)
/Γ
(
ν
2

)}
− 1

2 log(ν − 2) and ν > 2.

� Let ft = log(σ2
t ), we have

∇t =
1

2σ2
t

[
ωt y

2
t − σ2

t

]
and It =

1

2

ν

ν + 3
,

where

ωt =
ν + 1

ν − 2 + y2
t /σ

2
t

∈ [0, (ν + 1)/(ν − 2)].

Time t weight ωt attains zero if y2
t too large relative to current level of

volatility.
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FIGAS for conditional variance : the resulting model
The FIGAS model is then given by :

• demeaned log-return of some asset :

yt = σtεt , εt ∼ Student’s tν(0, 1),

with loglikelihood function given by

`t = c(ν)− 1

2
log(π)− 1

2
log(σ2

t )− ν + 1

2
log

(
1 +

y2
t

(ν − 2)σ2
t

)
,

where σ2
t = exp(ft).

• log-variance is updated :

f ∗t+1 = ω + βf ∗t + αst , f ∗t = (1− L)d ft ,

where the scaled score is given by

st = I−
1
2

t ∇t , ∇t =
1

2σ2
t

[
ωt y

2
t − σ2

t

]
and It =

1

2

ν

ν + 3
.

• FIGAS with leverage (FIGASL) : α⇒ α + γ1(yt<0).
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Conditional volatility
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Figure 1: Estimated vol for P&G daily returns over January 4, 1993 to May 28, 2010
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Robust filtering of volatility: the role of weight ωt
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Figure 2: P&G case study
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FIGAS for bivariate conditional dependence
� for dependence between two marginal series : bivariate t copula
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2
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2

,

where xit = t−1
η (uit) , i = 1, 2, uit ∈ (0, 1), ρt ∈ (−1, 1) and η > 0.

� t copula captures tail dependence which is governed by ρt and η

� extreme occurences of x1t and/or x2t can be due to heavy-tail nature
(low η) of the t copula, not neccessarily due to high ρt :
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FIGAS for bivariate conditional dependence
Define ft = log (1 + ρt / 1− ρt) ∈ R, we have

∇t =
ρ̇t

(1− ρ2
t )2

[
(1 + ρ2

t )
(
πtx1tx2t − ρt

)
− ρt

(
πtx

2
1t + πtx

2
2t − 2

)]
,

It =
ρ̇2
t

(1− ρ2
t )2

(
1 + ρ2

t −
2ρ2

t

η + 2

)
η + 2

η + 4
,

where ρ̇t is derivative of ρt wrt ft , with time-dependent weight defined as

πt =
η + 2

η + mt
∈ [0, (η + 2)/η],

where

mt = xt
′R−1

t xt ≥ 0, with xt = [x1t x2t ]
′ and Rt =

(
1 ρt
ρt 1

)
.

For a finite η, extreme observations x1t and/or x2t leading to a large
Mahalanobis distance mt will, as the result of downweighting via πt , have
limited impact on the correlation dynamics.
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FIGAS for bivariate conditional dependence
The FIGAS model for dependence is then given by :

• The t-copula is given as above with

ρt =
1− exp ft
1 + exp ft

,

• logit-dependence is updated :

f ∗t+1 = ω + βf ∗t + αst , f ∗t = (1− L)d ft ,

where the scaled score is given by

st = I−
1
2

t ∇t ,

where

∇t =
ρ̇t

(1− ρ2
t )2

[
(1 + ρ2

t )
(
πtx1tx2t − ρt

)
− ρt

(
πtx

2
1t + πtx

2
2t − 2

)]
,

It =
ρ̇2
t

(1− ρ2
t )2

(
1 + ρ2

t −
2ρ2

t

η + 2

)
η + 2

η + 4
.
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Conditional dependence
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Figure 3: Estimated correlation for GE/KO daily returns over January 4, 1993 to May 28, 2010
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Robust filtering of correlation: the role of πt
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Figure 4: GE/KO case study
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What have we done ?

• We have reviewed GAS models.

• Focus: modelling time-varying parameters in observation-driven
approach.

• In particular we have shown that score driven models reduce to
many well-established models in financial econometrics.

• Today we have shown how interesting new model formulations can
be derived.

Examples:

• Forecasting with GAS models and comparisons with State Space
Models

• Dynamic Factor Models with Mixed Measurements and Mixed
Frequencies

• Modelling Dynamic Volatilities and Correlations using GAS models

Much more work to do !!
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