
Additional information by GAS program GasVolaUniv

This document gives additional information users should know before implementing the

program GasVolaUniv.ox. The class of volatility models covered by the program is given by

yt = µ+ σ(ft)ut, ut ∼ pu(ut; θ),

ft = ω +

p∑
i=1

Aist−i +

q∑
j=1

Bjft−j, t = 1, . . . , n,
(1)

with pu(ut; θ) a standardised disturbance density, σ(ft) a link function and st the scaled

score. The parameter vector θ is given by

θ = (ω,A1, . . . , Ap, B1, . . . , Bq, µ, ν) , (2)

and is estimated by the method of maximum likelihood. The parameter which represents

the degrees of freedom ν in (2) is estimated only when the standardised disturbance density

pu(ut; θ) is Student’s t. The user of the program is referred to Creal, Koopman, and Lucas

(2013) for more explanation on GAS models.

User input
The user input is located between line 249 and 267 of the program. The following code is

copied from the program.

249 mdata = loadmat("DJInd19801999.xls"); s_mY = mdata[1:][4]’;

250 dscaling = 1; // Scaling data can improve stability, 1 for no scaling

251 s_mY.*= dscaling;

252 // Distribution: GAUSS, STUD_T

253 s_iDistribution = STUD_T;

254 // Link function: SIGMA (f_t=sigma^2_t), LOG_SIGMA (f_t=log(sigma^2_t)

255 s_iLinkFunction = LOG_SIGMA;

256 // Scaling score: INV_FISHER, INV_SQRT_FISHER

257 s_iScalingChoice = INV_FISHER;

258 // Order of GAS model p, q

259 s_ip = 1; s_iq = 1;

260 // Standard erros: HESS, SAND

261 s_iStdErr = HESS;

262 // Starting values (note the dimensions of s_ip and s_iq)

263 domega = 0;

264 vA = <0.10>’; // Extend for higher orders of p, separate with comma’s.

265 vB = <0.89>’; // Extend for higher orders of q, separate with comma’s.

B_1 + ... + B_q < 1

266 dmu = 0.01;

267 ddf = 5; // Only estimated if s_iDistribution = STUD_T
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The user input starts by loading the data which needs to be analysed (code line 249). The

dataset DJInd19801999.xls, available from the same source this document comes from, is

loaded as example. In some cases the optimising process becomes more stable if the data is

scaled by a factor (code line 250). If the data are returns, a factor of 100 should work well.

1. Choice of disturbance density, (code line 253): available choices are GAUSS and STUD_T.

2. Choice of link function σ(ft) (code line 255): available choices are SIGMA (ft = σ2
t ) and

LOG_SIGMA (ft = logσ2
t ). The LOG_SIGMA option is generally more stable.

3. Choice of scaling of the score, (code line 257): available choices are INV_FISHER and

INV_SQRT_FISHER.

4. Order of the GAS model, (code line 259): available choices are any integer > 0 with a

maximum dependent on what the data can identify.

5. Choice of standard error type, (code line 261): available choices are HESS (empirical

Hessian) and SAND (sandwich estimator).

6. Starting values for the maximising algorithm, (code line 263 to 267): if the link function

is specified as SIGMA, the parameter ω is restricted to be ω ≥ 0 which is guaranteed by

a log transformation of the parameter in the model. No actions for this are required

by the user. The user needs to extend the vector of starting values for vA (code line

264) and vB (code line 265) to the number equal to s_ip and s_iq (code line 259),

respectively. The sum of the elements in vB cannot exceed 1. Note that obtaining a

global maximum is not always guaranteed and trying different starting values could be

useful in some situations.

Computational details

1. Standard errors of the MLE are calculated by inverting the numerically computed

Hessian matrix and applying the delta method to the transformed parameter(s).

2. The unconditional mean of ft is used as initial condition given by f0 = ω(1−B)−1.

3. The first max(s_ip, s_iq) observations do not contribute directly to the likelihood

function as described in, for example, Tsay (2005) p107.

Model output

1. The program output are the BFGS iterations, the maximized log likelihood value and

the estimated parameters + standard errors.

2. A figure is plotted with the estimated volatility σt in the top panel, the score ∇t in

the mid panel and the scaled score st = St∇t in the bottom panel, all for t = 1, . . . , n

where St is the scaling matrix which depends on the choice of the user.
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3. Activate the function CompareGaussStudt to estimates the parameter vector for the

available distributions and plot the estimated volatility for each density in one graph.

Example
We illustrate the working of the model with an example. This program comes with a data

set of weekly continuously compounded returns from the Dow Jones between 1980 and 1999.

The data does not need to be scaled as it won’t give any problems with estimating the

parameter vector. We start the analysis of the data by selecting the following options

s_iDistribution = GAUSS;

s_iLinkFunction = LOG_SIGMA;

s_iScalingChoice = INV_FISHER;

s_ip = 1; s_iq = 1;

s_iStdErr = HESS;

and starting values

domega = 0;

vA = <0.10>’;

vB = <0.89>’;

dmu = 0;

Note that a starting value for ddf does not need to be specified (any number will do). After

running the program the output should say

Strong convergence using numerical derivatives

Log likelihood value = 2502.138569

Parameters with standard errors:

omega -0.99661 (0.37868)

A1 0.10085 (0.02457)

B1 0.87236 (0.04847)

mu 0.0028253 (0.00060)

The program should converge in around 30 iterations which takes between one and two

seconds on a modern desktop pc. The maximum likelihood estimate for omega is −0.99661.

A negative value is allowed because we selected the link function LOG_SIGMA which guarantees

positive values for the estimated volatility. The output window should be like the one showed

in Figure 1. Next, we change the distribution to the Student’s t distribution. For this we

change the input block to

s_iDistribution = STUD_T;

s_iLinkFunction = LOG_SIGMA;

s_iScalingChoice = INV_FISHER;

s_ip = 1; s_iq = 1;

s_iStdErr = HESS;
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and starting values

domega = 0;

vA = <0.10>’;

vB = <0.89>’;

dmu = 0;

ddf = 5;

After running the program the output should now say

Strong convergence using numerical derivatives

Log likelihood value = 2530.951609

Parameters with standard errors:

omega -0.27471 (0.14612)

A1 0.06615 (0.01683)

B1 0.96481 (0.01863)

mu 0.0032291 (0.00057)

df 7.3437 (1.47187)

with the output window as showed in Figure 2. As can be seen from Figure 2, the reac-

tion of the model to the Black Monday crash is very different compared to the Gaussian

model. To see the estimated volatility of both models in one figure, activate the function

CompareGaussStudt on line 283 of the program. Do this by removing the two slashes in

front of it. Also, place two slashes in front of line 280, 281 and 282. After running the

program, the output window should now look like Figure 3.
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Figure 1: Gaussian: estimated volatility, score and scaled score
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The top panel shows the weekly continuously compounded return from the Dow Jones between 1980 and
1999 and the estimated volatility. Note the big spike in volatility caused by the Black Monday crash of
October 19, 1987. The mid panel shows the score and the bottom panel shows the scaled score.

Figure 2: Student t: estimated volatility, score and scaled score
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The top panel shows the weekly continuously compounded return from the Dow Jones between 1980 and
1999 and the estimated volatility. The mid panel shows the score and the bottom panel shows the scaled
score.
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Figure 3: Comparison between Gaussian and Student t model
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The figure shows the weekly continuously compounded return from the Dow Jones between 1980 and 1999
and the estimated volatility by the Gaussian and the Student t model. The milder reaction of the Student
t model to the Black Monday crash is clearly visible.
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